
An Adaptive Mesh Re�nement Algorithm for Porous Media Flows 1

Richard M. Propp and Phillip Colella

Lawrence Berkeley National Laboratory, Berkeley, California 94720

E-mail: RMPropp@lbl.gov

Flows through porous media are characterized by localized phenomena

such as fronts. To concentrate computational e�ort around these localized

phenomena, we use Adaptive Mesh Re�nement (AMR) techniques devel-

oped by Berger and Oliger. We re�ne in space using a nested hierarchy of

block-structured grids. We re�ne in time by using subcycling { we advance

�ner grids several times and synchronize them with the coarser grids. We

introduce three new innovations in our adaptive algorithm. First, we use

a volume-discrepancy method to correct for the lack of freestream preser-

vation at coarse/�ne interfaces. Second, we introduce a lagged correction

scheme for coarse/�ne boundary conditions to minimize the number of

multilevel elliptic solves. Finally, we determine re�ned regions using an

estimate of the local truncation error; this is a generic method of tagging

cells that is suitable for the hyperbolic-elliptic problem that we are solv-

ing. Our results demonstrate that the adaptive mesh re�nement algorithm

is able to reproduce the results from a single-grid code with a substantial

savings in memory and computational e�ort.

Key Words: adaptive mesh re�nement, porous media 
ows, Godunov methods

1. INTRODUCTION

Many physical processes involve multiphase 
ow through a porous media. Appli-

cations include such diverse areas as petroleum reservoir simulations, groundwater

remediation, chemical and materials processing, and bio
uids [13].

Flow through a porous media is typically characterized by localized phenomena

such as fronts moving through the domain. In addition, there can be heterogeneities

in the medium which cause channeling. Clearly, it is desirable to use a computa-

1Research supported at UC-Berkeley by the US Department of Energy Mathematical, In-

formation, and Computational Sciences Division, Grants DE-FG03-94ER25205 and DE-FG03-

92ER25140; and at the Lawrence Berkeley National Laboratory by the US Department of Energy

Mathematical, Information, and Computational Sciences Division, Grant DE-AC03-76SF00098.

The �rst author was also supported by the Computational Sciences Graduate Fellowship Program

of the OÆce of Scienti�c Computing in the Department of Energy.

1



2 PROPP AND COLELLA

tional mesh that can resolve these phenomena. However, since the location of these

phenomena may not be known a priori and may change in time, we can not use

a static �ne mesh around the phenomena. Instead, we detect the presence of the

important 
ow features and adaptively re�ne the grid around the 
ow features.

In this work, we extend the single-grid algorithm of [16] to an adaptive hierarchy

of grids; we neglect capillary pressure e�ects and the Ergun equation that were used

in [16]. The basic algorithm uses a total-velocity splitting technique to split the

governing equations into a hyperbolic saturation equation and an elliptic pressure

equation. We use the block-structured adaptive mesh re�nement (AMR) approach

that was originally developed by Berger and Oliger [8]. In block-structured re�ne-

ment, the problem is solved on a hierarchy of nested grids { �ner grids are embedded

within coarser grids. An error estimation procedure is used to determine where �ne

grids are needed. In addition, we use smaller time steps on the �ner grids { this

e�ectively allows us to re�ne in time, in addition to re�ning in space.

There are several ways to organize the elliptic solvers to deal with re�nement

in time. For example, Hornung and Trangenstein [14] use composite solves on the

entire hierarchy of grids at every �nest-level time step. Our approach is similar in

spirit to Almgren et al. [2]. We use two types of elliptic solvers: 1) a composite

solver which solves on the hierarchy of grids and 2) a level solver which only solves

on a single level of grids. We perform composite solves only at the times when data

is de�ned at all of the levels. At other instances, such as at a �ne-grid time step in

between two coarse-grid time steps, we use a level solve and a lagged correction of

the boundary conditions. This dual solver method is more computationally eÆcient

than doing only composite solves.

Subcycling in time and using a velocity �eld that results from an elliptic solve

implies that we may not have freestream preservation at coarse/�ne interfaces. To

deal with these freestream problems, we use a volume-discrepancy method based on

the work of Acs et al. [1] and Trangenstein and Bell [17]. We introduce an auxiliary

advected quantity that measures the amount of the freestream violation and use

it to generate an increment in velocity that drives the solution toward freestream

preservation.

The rest of this paper describes the extension of [16] to an adaptive hierarchy

of grids. Section 2 gives a brief summary of the governing equations, recasts them

in a sequential algorithm, and then describes our algorithm for solving them on a

single grid. Section 3 describes the modi�cations to the single-grid algorithm to

extend it to a hierarchy of grids. Section 4 shows that the adaptive algorithm uses

a smaller number of grid cells than the single-grid algorithm, but still manages to

produce the same results.

2. SINGLE-GRID ALGORITHM

In this section, we specify the governing equations, auxiliary relations and bound-

ary conditions for a simpli�ed model of 
ow in a porous medium. Then we derive

a system of equations that is suitable for a sequential solution method and give an

overview of the numerical algorithm for a single grid; a more detailed description

of the single-grid algorithm can be found in [16]. We assume a basic knowledge of

porous media; for a more detailed examination of porous media, see the books by

Bear [4] or Collins [12].



AMR FOR POROUS MEDIA FLOWS 3

2.1. Governing Equations

Our simpli�ed model assumes that the porosity is not time-dependent and the

phase densities and viscosities are constant. In addition, we assume that the system

contains two components { component A which exists only in the liquid phase and

component B which exists only in the gas phase; as a result, we can use the terms

\phase" and \component" interchangeably in this paper. We will denote the liquid

phase by the subscript L and the gas phase by the subscript G.

With these assumptions, the three main equations governing the 
ow are conser-

vation of volume, conservation of mass, and Darcy's law:

sL + sG = 1 (1)

�
@(sp)

@t
+r � vp = 0 (2)

vp = ��p(rP + 
prz) (3)

where 
p =
�pg

gc
is a grouping of gravity terms and sp, �p, vp, and �p represent the

saturation, density, velocity and mobility of phase p. In addition, P is the pressure,

g is the acceleration due to gravity, � is the porosity, gc is the gravity conversion

factor (gc = 1 in the metric system), t denotes time, and z is the upward-directed

coordinate. These three equations are augmented by auxiliary correlations to make

the system solvable.

The phase mobility of phase p is de�ned as:

�p = k
kRp

�p
(4)

where k is the permeability, kRp is the relative permeability of phase p, and �p is

the viscosity of phase p. The expressions for permeability, relative permeability,

and phase viscosity are typically problem dependent. In this work, we treat the

permeability as a function of porosity (using the Kozeny-Carman equation) and the

relative permeability as a function of porosity and liquid saturation. The speci�c

correlations can be found in [16].

For boundary conditions, we specify that there is an inlet at the top of the domain,

an outlet at the bottom of the domain, and the other two sides are impermeable

walls (these boundary conditions are meant to model a trickle bed reactor). At

the impermeable walls, we specify that the normal components of the velocities are

zero. At the outlet, we specify the pressure and that the normal derivative of liquid

saturation be zero; in e�ect, this means that we will have no boundary layer at

the outlet. At the inlet, we specify the liquid saturation and the gradient of the

pressure.

2.2. Total Velocity Formulation

The equations of 
ow in a porous medium exhibit both elliptic and hyperbolic

behavior. For example, pressure e�ects are instantaneously felt throughout the

reservoir, while saturation fronts move at a �nite speed [6]. Our numerical algorithm

treats these e�ects separately by splitting the system of governing equations into

an elliptic pressure equation and a hyperbolic saturation equation.



4 PROPP AND COLELLA

In a manner similar to the work of Watts [18], we de�ne a total velocity:

vT = vL + vG: (5)

As a result of the conservation of volume (1) and conservation of mass (2) equations,

the total velocity is divergence-free. Using the de�nition of total velocity, we obtain

a pressure equation and a conservation of mass equation:

r � [(�L+�G)(rP )] = r � [(�G
G + �L
L)(rz)] (6)

�
@sL

@t
+r � F(sL;vT ) = 0 (7)

where

F(sL;vT ) =
�L(vT �G�G)

�L+�G
G = (
L � 
G)rz:

In addition, we can write the total velocity as a function of pressure and phase

mobilities:

vT = �(�L + �G)rP � (�L�L + �G�G)grz: (8)

2.3. Numerical Algorithm

We cover the domain with a mesh of �nite-volume grid cells. We use one of two

di�erent two-dimensional coordinate systems for these grid cells { 1) a Cartesian co-

ordinate system (x-z) and 2) a cylindrical coordinate system (r-z). In the Cartesian

coordinate system, the grid cells are rectangular of size 4x by 4z, and are indexed

in the x-direction by i and in the z-direction by j. In the cylindrical coordinate

system, the grid cells are of size 4r by 4z, and are indexed in the r-direction by i

and in the z-direction by j. We discretize in time using the index n, such that the

time step 4t is the di�erence between discrete times tn and tn+1. Saturations and

pressures are de�ned at cell centers, such that sni;j � s((i+0:5)4x; (j+0:5)4z; tn).

Phase mobilities and the normal components of velocities are de�ned at cell edges

and use half indices, such that vn
i+ 1

2
;j
represents the x-velocity at the \right" edge

of cell (i; j).

The sequential algorithm advances the liquid saturation from time tn to time

tn+1 by solving a sequence of hyperbolic and elliptic equations. The starting point

for our approach is the multidimensional upwind method in [11], extended in [5]

to combined hyperbolic and elliptic equations. We follow the treatment of [16],

particularly in the treatment of the nonlinear hyperbolic terms.

We denote variables at the current time by the superscript n and variables at

the new time by the superscript n+1. In addition, we denote temporary predicted

variables at time n + 1 by the superscript ~ . With this notation, we can express

the predictor-corrector scheme to advance the saturation from n to n+ 1 as:

1. Compute the pressure and velocity at the current time step.



AMR FOR POROUS MEDIA FLOWS 5

We compute the pressure at the current time, Pn, by solving the pressure equation:

�r � [(�nG+�nL)(rP
n)] = �r � [(�nG 
G + �nL 
L)(rz)]:

Next, we compute the total velocity at the current time, vnT :

vnT = �(�nL+�nG)rP
n � (�nL 
L + �nG 
G)rz:

2. Trace the liquid saturation to cell edges at the half time step.

We use the velocity and saturation at the current time in Godunov's method to

compute liquid saturation at the half time step at cell edges, s
n+ 1

2

EDGE .

3. Approximate the velocity at the half time step.

We compute the velocity at the half time step by averaging the velocity at the

current time step, vnT , with the predicted velocity at the next time step, ~vT . The

�rst step in computing ~vT is to predict the saturation at the next time step, ~sL:

�
~sL � snL
4t

= �r � F(s
n+ 1

2

EDGE ;v
n
T ):

where F is an approximation to the 
ux at cell edges. We use this predicted

saturation to compute the predicted pressure at the next time step, ~P :

�r � [(~�G+ ~�L)(r ~P )] = �r � [(~�G 
G + ~�L 
L)(rz)]:

Again, the ~ superscript on the phase mobilities indicates that they are computed

using the predicted saturation ~s. Next, we predict the velocity at the next time

step, ~vT :

~vT = �(~�L+ ~�G)r ~P � (~�L 
L + ~�G 
G)rz:

Finally, we average the predicted velocity and the current velocity to obtain the

velocity at the half time step, v
n+ 1

2

T :

v
n+ 1

2

T =
1

2
(vnT + ~vT ):

4. Compute the liquid saturation at the next time step.

Now that we have both a saturation and a velocity at the half time step, we can

compute a second-order accurate saturation at the next time step, sn+1L :

�
sn+1L � snL

4t
= �r � F(s

n+ 1

2

EDGE ;v
n+ 1

2

T ):

The use of Godunov's method and methods for solving the saturation equation and

pressure equation are described in detail in [16].



6 PROPP AND COLELLA

FIG. 1. Example of a grid hierarchy with two levels of re�nement. The re�ned levels are

nested inside coarser levels.

3. ADAPTIVE ALGORITHM

In this work, we use the block-structured adaptive mesh re�nement approach that

was originally developed by Berger and Oliger [8]. In block-structured re�nement,

the problem is solved on a hierarchy of nested grids. This section begins with a

description of the AMR grid hierarchy and then focuses on the di�erences that

arise due to the presence of a hierarchy of grids, such as synchronization of data

between levels and freestream preservation. Finally, it gives a brief overview of the

adaptive algorithm on a hierarchy of grids and discusses several di�erent algorithms

for determining which cells need re�nement.

3.1. AMR Grid Hierarchy

In a block-structured approach to adaptive mesh re�nement, the problem is

solved on a hierarchy of levels; each level consists of a collection of rectangular

grids. We index these levels by the superscript `, where ` = 0 is the coarsest level

and ` = `max is the �nest level. We denote the problem domain covered by level `

grids by 
`. We require that 
0 cover the entire problem domain, while �ner levels

generally only cover part of the problem domain. Figure 1 shows an example of a

grid hierarchy that contains two levels of re�nement.

We use the superscript � to denote cell edges; therefore, the union of cell edges

on level ` is denoted by 
`;�. We de�ne @
`;� as the boundary of grids on level

`; we note that @
`;� is a subset of 
`;�. Finally, we de�ne a projection operator,

P(
`+1) as the set of level ` cells that are covered by level `+1 cells. The projection

operator also applies to cell edges; for example, P(
`+1;�) are the edges of cells on

level ` that are covered by edges of cells on level `+ 1 grids.

Each level has its own mesh spacing; the mesh spacing for level ` in the x-direction

is denoted by 4x`, while the mesh spacing in the z-direction is denoted by 4z`.

We de�ne the re�nement ratio for level `, n`ref , to be the ratio of mesh spacings



AMR FOR POROUS MEDIA FLOWS 7

between level ` and level `+ 1:

n`ref �
4x`

4x`+1
�

4z`

4z`+1
:

In general, there is no restriction on the value of the re�nement ratio except that it

be greater than one; however, in this work, we use re�nement ratios that are powers

of two in order to facilitate convergence of the multigrid-based elliptic solvers. We

do not require each level to have the same re�nement ratio.

We require that the grids satisfy two proper nesting conditions. The �rst con-

dition is that if a cell is re�ned, it is completely re�ned; there is no partial cell

re�nement. The second condition is that @
` either resides in the interior of 
`�1

or on a physical boundary. These conditions substantially simplify the communi-

cation of data between levels and the imposition of boundary conditions.

3.1.1. Variables and Operators

In addition to making the distinction between cell-centered and edge-centered

variables, we also classify variables as either level or composite variables. Level

variables are valid in all of the grid cells on a level and are computed without

knowledge of data from �ner or coarser levels. Composite variables, denoted by

the superscript comp, are only valid in grid cells that are not covered by �ner grid

cells. Thus, a cell-centered composite variable on level ` only has valid data on


` �P(
`+1). Edge-centered composite variables are de�ned in a similar manner;

an edge-centered composite variable on level ` is only valid on 
`;� �P(
`+1;�).

The operators in the adaptive algorithm require that all grid cells have data, so

in cells that are covered by �ner grid cells, we average down the �ner grid data to

the coarse grid cells. We de�ne the averaging operator, <>, as the operator that

does simple arithmetic averaging to transfer data from level ` + 1 to level `. For

cell-centered variables, we average the values of the (n`ref )
2 overlying level ` + 1

cells. For edge-centered variables, we average the values of the n`ref overlying level

`+ 1 cell edges.

A vector �eld is a special type of edge-centered variable { it represents a vector

of data where each component of the �eld is only de�ned on one set of edges of the

cell. The x-component of the vector �eld is only de�ned on the x-edges of the cell,

while the z-component of the vector �eld is only de�ned on the z-edges of the cell.

Vector �elds may be either composite or level variables.

Gradients.

The generic gradient operator, G, takes a cell-centered scalar and maps it into

an edge-centered vector �eld. If we consider a cell-centered scalar �, we de�ne the

x-component and z-component of the gradient �eld as:

G(�)ji+ 1

2
;j =

�i+1;j � �i;j

4x
; G(�)ji;j+ 1

2

=
�i;j+1 � �i;j

4z
: (9)

We de�ne the level gradient operator acting on level `, G`(�`; �`�1), by Eq. (9).

If one of the grid cells necessary to compute the gradient falls outside the boundaries

of the grid, we classify the boundary as one of three di�erent types: 1) a physical

boundary, 2) a boundary with another grid at the same level of re�nement, and 3)



8 PROPP AND COLELLA

x x

x x

f

fbottom

top
x

x

j+1

kk-1

j-1

j

i-1 i
FIG. 2. The interpolation stencil and computation of 
uxes at a coarse/�ne interface. A

polynomial is �rst �t through the three coarse cells (the empty circles); we use this polynomial to

compute the intermediate values (the �lled circles). Then, a polynomial is �t through the two �ne

cells (the X's) and the intermediate values (the �lled circles); we use this polynomial to compute

the values in the ghost cells (the circles with X's).

a boundary with another grid at a coarser level of re�nement. If a grid boundary

is a physical boundary, then the cell is �lled by enforcing the physical boundary

condition. For a boundary with another grid at the same level of re�nement, we

copy the data from the other grid. If the boundary of a grid is not with another

grid at the same level or a physical boundary, then the grid cell is �lled using data

from coarser grids; as a result of the proper nesting condition, the grid cell values

can be determined using only data from the next coarser level. As shown in Figure

2, a polynomial is �rst �t through the three coarse cells (the empty circles) adjacent

to the interface and is used to compute the intermediate values (the �lled circles).

Then, a polynomial is �t through two �ne cells (the X's) and the newly interpolated

coarse cells (the �lled circles); this polynomial is used to compute the values in the

ghost cells (the circles with X's). If the three coarse grid cells do not exist, then we

modify the coarse grid polynomial by shifting it one coarse grid cell.

The composite gradient operator acting on level `, Gcomp;`(�`; �`�1), is also de-

�ned by Eq. (9) and it �lls cells outside of the grid in the same manner as the level

gradient operator. However, the composite gradient operator is only valid at cell

edges that are not covered by edges of �ner cells, i.e. 
`;� �P(
`+1;�).

Divergence and Re
ux Divergence.

The generic divergence operator, D, takes an edge-centered vector �eld and maps

it into a cell-centered scalar. We de�ne the divergence operator acting on an edge-



AMR FOR POROUS MEDIA FLOWS 9

centered vector f as:

D(f)ji;j =
fx
i+ 1

2
;j
� fx

i� 1

2
;j

4x
+

fz
i;j+ 1

2

� fz
i;j� 1

2

4z
: (10)

We de�ne a level divergence operator acting on level `, D`(f `) by Eq. (10). Since

the vector �eld contains all of the necessary edge-centered values to compute the

operator, there is no need to use boundary conditions to �ll ghost cells.

The composite divergence operator on level `, D`(f `; f `+1), is also de�ned by Eq.

(10); however, we alter the composite operator at interfaces with �ner grids, i.e. on

P(@
`+1;�). At this interface, we have an edge-centered, coarse-grid value and n`ref
edge-centered, �ne-grid values with no guarantee that they will be equivalent. To

force them to be equivalent, we assume that the �ne-grid values are more accurate

and replace the coarse-grid value with the average of the �ne-grid values. For

example, in Figure 2 we compute the divergence on level ` as:

D(f)ji;j =
fx
i+ 1

2
;j
� < fx;`+1 >i� 1

2
;j

4x
+

fz
i;j+ 1

2

� fz
i;j� 1

2

4z

where in this example

< fx;`+1 >i� 1

2
;j=

ftop + fbottom

2
:

We also de�ne a special type of edge-centered vector �eld called a 
ux register.

We denote the 
ux register for a variable f on the level `=(`+1) interface by ÆF `+1;f

(notationally, 
ux registers are associated with the �ner level). The 
ux register is

de�ned as:

ÆF `+1;f =< f `+1 � n̂ > �f ` � n̂ on P(@
`+1;�) (11)

where n̂ is the outward normal vector for the coarse/�ne interface. A 
ux register

on level ` is only valid on P(@
`+1;�).

Finally, we de�ne a re
ux divergence operator,DR(ÆF ), which takes edge-centered


ux registers and computes cell-centered scalars:

DR(ÆF
`+1;f )i;j =

X
e2P(@
`+1;�)

�Ae

V OLi;j
ÆF`+1;f (12)

where Ae is the cross-sectional area of the edge and V OLi;j is the volume of cell

(i; j). It is implied that the edges e in the summation are only those edges which

are adjacent to cell (i; j). The + or � sign is chosen based on which side of the

coarse cell the 
ux register is de�ned; we use + for the high side of a coarse cell

and � for the low side of a coarse cell. With these de�nitions, we note that we can

compute the composite divergence using 
ux registers and the level divergence:

Dcomp;`(f `; f `+1) = D`(f `) +DR(ÆF
`+1;f ) on 
` �P(
`+1):



10 PROPP AND COLELLA

Elliptic Operator.

We de�ne the elliptic operator L as:

L(�) = r � �r� (13)

where � is an edge-centered vector �eld and � is a cell-centered variable. We can

write L in terms of the generic divergence and gradient operators:

L(�) = D(�G(�)): (14)

Discretizing these generic operators, we obtain:

L(�i;j) =
�i+ 1

2
;j (�i+1;j � �i;j)� �i� 1

2
;j (�i;j � �i�1;j)

4x2

+
�i;j+ 1

2

(�i;j+1 � �i;j)� �i;j� 1

2

(�i;j � �i;j�1)

4z2
: (15)

We de�ne two types of elliptic operator: 1) a composite elliptic operator and 2)

a level elliptic operator. The composite elliptic operator, Lcomp;`(�`), discretizes

Eq. (14) using composite variables and composite operators and acts on the entire

hierarchy of levels. This operator uses data from the next coarser and next �ner

levels. In cells that are away from the 
` boundary, the operator Lcomp;`(�`) is

the normal elliptic operator (15). In cells on the 
`/
`�1 boundary (i.e. next to a

coarser grid), we use quadratic interpolation to place values in the border cells, and

then evaluate the operator as usual. In cells that border the 
`/
`+1 boundary

(i.e. next to a �ner grid), we use the 
ux matching conditions to evaluate 
uxes at

the boundary (see Section 3.2.3).

On the other hand, a level elliptic operator discretizes Eq. (14) using level vari-

ables and level operators and acts on a single level; this operator knows about the

next coarser level, but it has no knowledge of the next �ner level. As a result,

L`(�`; �`�1) is the same as Lcomp;`(�`) except that it does not use the coarse/�ne


ux matching condition at boundaries with �ne grids.

3.2. AMR for Porous Media Equations

In Section 2, we discussed the solution of the porous media equations on a single

grid. In this subsection, we describe the implementation of the algorithm on a

hierarchy of grids, focusing on the di�erences from the single-grid algorithm; these

di�erences include the selection of the time step and grid synchronization issues,

such as multilevel matching conditions and freestream preservation. Finally, we

state our algorithm for solving the coupled system of equations.

3.2.1. Time Stepping

In this work, we subcycle in time { we advance �ner grids at a time step smaller

than coarse grids; as a result, we only solve on part of the grid hierarchy at each

time step. We use the CFL condition to choose the time step on the coarsest level.

Denoting the time step on level ` by 4t`, we choose the time step on �ner levels



AMR FOR POROUS MEDIA FLOWS 11

timeStep(t; `)

advance(`; t;4t`)

if (` < `max)

for (i = 0; n`ref �1)

timeStep(t+ i � 4t`+1; `+ 1)

end for

Synchronize(`; `+ 1)

end if

end timeStep

FIG. 3. Example of subcycling

using:

4t`+1 = 4t`
1

n`ref
:

Subcycling in time can be thought of as a three-step recursive process on level `

(see Figure 3). The �rst step is to advance level ` in time using boundary conditions

from level `� 1 and from physical boundaries. The second step is to advance level

`+ 1, if it exists, n`ref times using a time step of 4t`

n`
ref

. The third and �nal step is

to synchronize the data and the 
uxes between coarse and �ne levels.

3.2.2. Coarse/Fine Data Matching

The �rst synchronization issue is coarse/�ne data matching. In this case, the

saturation in a coarse-grid cell may not be equivalent to the saturations in the �ne-

grid cells that cover it. This mismatch is simple to correct { we average down the

saturation from the �ne level to the coarse level using the averaging operator <>.

3.2.3. Coarse/Fine Flux Matching

The next synchronization issue is coarse/�ne 
ux matching. At a coarse/�ne

interface, there is no reason to expect that the coarse-grid 
uxes will equal the

�ne-grid 
uxes. For example, consider the coarse/�ne interface shown in Figure 2.

There is no guarantee that the two �ne-grid 
uxes (fbottom and ftop) are equivalent

to the coarse-grid 
ux (fcoarse). This 
ux inconsistency appears in both the elliptic

and hyperbolic equations.

Hyperbolic Equation.

For hyperbolic problems, the coarse/�ne 
ux matching condition implies that the

time-averaged sum of the �ne-grid 
uxes should be equal to the coarse-grid 
ux.

To enforce this condition, we use the correction scheme of Berger and Colella [7].

This scheme uses 
ux registers to store the di�erence in 
uxes between levels at

coarse/�ne interfaces. After advancing the �ne level, the 
ux registers are used to

modify the coarse-grid 
uxes.

Consider re
uxing in the x-direction for cell (i; j) in Figure 2. First, we advance

the solution one time step on the coarse grid and initialize the 
ux register, ÆF ,

with the coarse-grid 
ux. Then, we advance the solution n`ref times on the �ne

grid. At the end of each �ne time step, we increment the 
ux register with the sum



12 PROPP AND COLELLA

of the �ne-grid 
uxes at the coarse/�ne interface. After n`ref �ne time steps, the

coarse and �ne grids are at the same time and the 
ux register contains:

ÆFi� 1

2
;j = �4zC4tCFC

i� 1

2
;j
+4zF4tF

p=n`ref �1X
p=0

FF
k+ 1

2
;m+p

:

We re
ux the coarse-grid solution as:

si;j = si;j +
DR(ÆF )

�i;j

= si;j �
ÆFi� 1

2
;j

�i;jV OLi;j

where DR is the re
ux divergence operator (12). The minus sign was chosen

because we are dealing with the lower edge of the cell. The cross-sectional area

term that normally appears in the de�nition of the re
ux divergence operator was

included in the computation of the 
ux registers, while the 1
�
term accounts for the

fact that the volume used in the 
ux register computation is total volume, not pore

volume.

Elliptic Equation.

The obvious approach to solving an elliptic equation on a grid hierarchy is to solve

the problem on the coarse grid and then use the coarse-grid solution as boundary

conditions when solving on the �ne grid. However, this approach does not produce

the correct composite solution { we lose accuracy at the coarse/�ne interface be-

cause the solution at the coarse level never sees the e�ects of the solution at the

�ne level.

To �x this problem, we rewrite the discrete elliptic operator (15) in 
ux di�er-

encing form:

L(�) =
FX
i+ 1

2
;j
� FX

i� 1

2
;j

4x
+

FZ
i;j+ 1

2

� FZ
i;j� 1

2

4z

where the discrete edge-centered 
ux in the x-direction, FX
i+ 1

2
;j
, is:

FX
i+ 1

2
;j
= �i+ 1

2
;j(

�i+1;j � �i;j

4x
)

and z-direction 
uxes are de�ned analogously. To enforce the 
ux matching con-

dition we replace the coarse-grid 
ux with the sum of the �ne-grid 
uxes. This

matching condition is built into the elliptic operator.

3.2.4. Time-Dependent Elliptic Boundary Conditions

Subcycling in time creates time-centering problems with boundary conditions

for the elliptic pressure equation. Consider a two-level problem with a re�nement

ratio of two. We advance level 0 from time t0;n to t0;n+1. Then, we attempt to

advance level 1 from t1;2n to t1;2n+2; however, when we attempt to solve at t1;2n+1

= t0;n+
1

2 , there are no cells on level 0 at the proper time to use for boundary

conditions. Therefore, we need to interpolate in time on level 0 between tn and



AMR FOR POROUS MEDIA FLOWS 13

tn+1 to obtain a pressure with the correct time-centering; then, we will need to

interpolate in space to obtain the pressure at the correct spatial position.

However, this solution method produces a 
ux mismatch { the coarse grid never

sees the results of the �ne-grid computation. As a result, we obtain the same

accuracy as if we had only solved on the coarse level. Hornung and Trangenstein

[14] dealt with this matching condition by using a multilevel solver at every �nest-

level time step and interpolating coarse-grid saturations as necessary; however, this

method is computationally expensive. In this work, we use a di�erent approach

{ we combine the time interpolation of coarse-grid data with a lagged correction

scheme. We synchronize pressure at the beginning of each time step on each level

(performing a composite solve, if necessary); then, we compute a pressure correction

{ the di�erence between the composite pressure and the level pressure { and use

it to account for the presence of other levels in the AMR hierarchy. As a result,

we can use level solvers and include the pressure correction to account for other

levels. This algorithm does require us to lag the pressure correction for a time step;

however, we have found that the error introduced by lagging the pressure correction

is much smaller than the discretization error.

3.2.5. Freestream Preservation

Freestream preservation refers to the idea that in a uniform 
ow �eld, constant

properties (scalar �elds, velocities, etc.) should remain constant. In this work,

freestream preservation may be violated at coarse/�ne interfaces when we re
ux.

We can illustrate this violation by considering a hyperbolic conservation law of the

form:

@s

@t
+r � (F(s;vT )) = 0 (16)

where

F(s;vT ) = svT :

Let a coarse/�ne interface occur in the midst of a region of constant saturation, s0.

In that case, the 
ux register on level ` can be written as:

ÆF ` = �s`v`T � n̂+
1

n`ref

X
< s`+1v`+1T � n̂ >

= s0 (v
`
T � n̂�

1

n`ref

X
< v`+1T � n̂ >)

where the summation is over the �ne time steps and n̂ is the normal vector. For

the saturation to remain constant in the region, ÆF ` = 0; otherwise, re
uxing

will cause the saturation to change. This requirement simpli�es to a constraint

on the velocity { the coarse velocity must equal the time averaged sum of the �ne

velocities. However, since the velocities are dependent on di�erent elliptic pressure

solves, there is no reason to expect this constraint to be satis�ed; as a result, we

expect our algorithm to violate freestream preservation.

Almgren et al. [2] used a multilevel correction scheme that involved both ellip-

tic solves and interpolation of hyperbolic corrections onto �ner grids. With this



14 PROPP AND COLELLA

scheme, they were able to implement an algorithm that was exactly freestream pre-

serving. We use a di�erent correction method that is only approximately freestream

preserving, but is less complicated to implement. Our correction method is based

on the volume-discrepancy formulation used by Acs et al. [1] and Trangenstein and

Bell [17]. In their work, the volume balance is linearized and hence, 
uid volume is

not conserved. At the end of the each time step, they compute the volume discrep-

ancy; this volume discrepancy is then used as a correction term in their pressure

equation.

To implement our freestream correction, we de�ne an additional freestream vari-

able, V . We initially set V = 1 and then we advance it as a conserved quantity:

@V

@t
+r � (vTV ) = 0: (17)

Since the freestream quantity should remain constant, the extent that V 6= 1 mea-

sures the accumulated compression or expansion of the 
uid due to the coarse/�ne

boundary conditions. We note that (17) is solved with the same algorithm as the

liquid saturation equation { the only di�erence is that the 
ux function for the

freestream quantity, FV (vT ; V ), is di�erent.

We use the freestream quantity in a correction term. Performing a Taylor series

expansion on V (x(t); t + 4t) and setting V (x(t); t + 4t) = 1 (since we want to

predict the change necessary to set V equal to one at the new time), we obtain:

r � vT =
V � 1

V4t
:

Recall that our pressure equation enforces the constraint r � vT = 0. We modify

the right-hand side of the equation for pressure by adding the V�1
V4t

term. To ensure

that we do not induce an instability, we scale the freestream correction term by �,

where � < 1. In this work, we use � = 0:90. As a result, the pressure equation,

with the freestream correction, is:

r � [(�L+�G)(rP )] = r � [(�G
G + �L
L)(rz)] + �
V � 1

V4t
:

3.2.6. Algorithm

The adaptive algorithm follows the same general predictor-corrector scheme as

the single-grid algorithm, but there are several di�erences between the algorithms

due to synchronization issues; these di�erences were discussed in the previous sub-

sections. The algorithm to advance the solution on a level can be divided into

six steps; the steps are numbered 0-5 so that they correspond to the steps in the

single-grid algorithm in Section 2.3. In outline form, the algorithm to advance the

solution on level ` from n to n+ 1 is:

0. Compute the composite pressure and composite velocity at the current time.

If we are doing the �rst time step at the current time, then we need to compute

the composite pressure, pcomp;n and the composite velocity, vcomp;n on levels ` to

`max. If we are not doing the �rst time step at the current time, these quantities

have already been computed during the update of a coarser time level.



AMR FOR POROUS MEDIA FLOWS 15

First, we compute the composite pressure by solving the pressure equation modi�ed

with the freestream preservation term:

�r � (�n;`L +�
n;`
G )rpcomp;n = �r � [(�n;`G 
G + �

n;`
L 
L)(rz)] +

1

4t`
V n;` � 1

V n;`
:

This equation is solved using a composite elliptic solver. If we are on the coarsest

level, then we only need to use physical boundary conditions; however, if we are not

on the coarsest level, then we use a combination of physical boundary conditions

and boundary conditions from level `�1. The level `�1 conditions are interpolated

linearly in time between p`�1 and ~p`�1. Since both p`�1 and ~p`�1 are computed

from level solves, we need to add in the pressure correction e`�1 (de�ned in Step 1)

that accounts for the presence of other levels. In compact notation, this boundary

condition is stated as:

pcomp;` = ITX (p
`�1; ~p`�1) + e`�1 on @
`

where ITX indicates interpolation in both space and time.

Next, we compute the composite total velocity, vcomp;n;`
T on levels `max to `. We

compute the velocity as a function of the composite pressure; however, when the

a grid on the current level is covered by a �ner grid, we average down the velocity

from the �ner grid:

v
comp;n;`
T =

�
�(�n;`L +�

n;`
G )rpcomp;n;` � (�n;`L 
L + �

n;`
G 
G)rz on 
`;� �P(
`+1;�)

< v
comp;n;`+1
T > on P(
`+1;�):

1. Compute the level pressure and level velocity at the current time step.

We compute the level pressure, pn;`:

�r � (�n;`L +�
n;`
G )rpn;` = �r � [(�n;`G 
G + �

n;`
L 
L)(rz)] +

1

4t`
V n;` � 1

V n;`
:

For boundary conditions, we interpolate in time between p`�1 and ~p`�1. We also

compute the level velocity, vn;`T , as a function of the level pressure:

v
n;`
T = �(�n;`L +�n;`G )rpn;` � (�n;`L 
L + �n;`G 
G)rz:

Finally, we compute the pressure correction, en;`:

en;` = pcomp;n;` � pn;`:

This corrections account for the presence of other levels in the grid hierarchy.

2. Trace the scalar variables to cell edges at half time step.

We use the composite velocity in Godunov's method to compute the advected

quantities at the half time step at cell edges: s
n+ 1

2
;`

EDGE; V
n+ 1

2
;`

EDGE .

3. Approximate the velocity at the half time step.

We compute the velocity at the half time step by averaging the velocity at the

current time step, vcomp;n;`
T , with the predicted velocity at the next time step, ~v`T .



16 PROPP AND COLELLA

The �rst step in computing ~v`T is to predict the saturation and freestream quantity

at the next time step, ~s` and ~V `:

�
~s` � sn;`

4t`
= �r � Fs(sn+

1

2
;`;v

comp;n;`
T )

�
~V ` � V n;`

4t`
= �r �FV (V n+ 1

2
;`;v

comp;n;`
T ):

We perform a level elliptic solve using these predicted quantities to compute the

predicted pressure at the next time step, ~p`:

�r � (~�n;`L + ~�n;`G )r~p` = �r � [(~�n;`G 
G + ~�n;`L 
L)(rz)] +
1

4t`

~V ` � 1
~V `

:

For the boundary conditions, we interpolate in time between p`�1 and ~p`�1 and

add in the pressure correction to make this level solve equivalent to a composite

solve. In compact notation, this boundary condition is:

~p` = ITX (p
`�1; ~p`�1) + e` on @
`

Next, we predict the velocity at the next time step, ~v`T , as a function of the predicted

pressure:

~v`T = �(~�n;`L + ~�n;`G )r~p` � (~�n;`L 
L + ~�n;`G 
G)rz

Finally, we average the composite velocity and the predicted velocity to obtain the

velocity at the half time step, v
n+ 1

2
;`

T :

v
n+ 1

2
;`

T =
1

2
(vn;`T + ~v`T ):

4. Compute the advected quantities at the next time step.

Now that we have both a saturation and a velocity at the half time step, we can

compute a second-order accurate saturation and freestream quantity at the next

time step:

�
sn+1;` � sn;`

4t`
= �r � Fs(s

n+ 1

2
;`

EDGE ;v
n+ 1

2
;`

T )

�
V n+1;` � V n;`

4t`
= �r � FV (V

n+ 1

2
;`

EDGE ;v
n+ 1

2
;`

T ):

If a �ner level exists, we initialize the level `+1 
ux registers, ÆF `+1, with the level

` 
uxes (in this step, we are concerned with the level `/(`+1) interface, so the level

` 
uxes are the coarse 
uxes):

ÆF s;`+1 = �4t`Fs(sn+
1

2
;`;v

n+ 1

2
;`

T ) � n̂ on P(@
`+1;�)

ÆF V;`+1 = �4t`FV (V n+ 1

2
;`;v

n+ 1

2
;`

T ) � n̂ on P(@
`+1;�):



AMR FOR POROUS MEDIA FLOWS 17

If a coarser level exists, we increment the level ` 
ux registers (in this step, we are

concerned with the level (`�1)/ ` interface, so the level ` 
uxes are the �ne 
uxes):

ÆF s;` = ÆF s;` +4t` < Fs(sn+
1

2
;`;v

n+ 1

2
;`

T ) � n̂ > on P(@
`;�)

ÆF V;` = ÆF V;` +4t` < FV (V n+ 1

2
;`;v

n+ 1

2
;`

T ) � n̂ > on P(@
`;�):

5. Advance �ner levels.

Next, we recursively advance the �ner levels { we update level `+1 grids n`ref times

with 4t`+1 = 4t`

n`
ref

.

6. Synchronize the current level with the �ner levels.

After updating the �ner levels, we synchronize the current level and �ner levels by

re
uxing the saturation and freestream quantity on the current level:

sn+1;` = sn+1;` + 1
�
DR(ÆF

s;`+1)

V n+1;` = V n+1;` + 1
�
DR(ÆF

V;`+1):

The last step in the algorithm is to average down the freestream quantity and the

saturation from the �ner levels to the current level; note that we use a volume-

weighted average based on pore volume. We do not calculate velocities or pressures

at the new time; any e�ort to compute these quantities is wasted, since they will

change when the advected quantities are re
uxed and averaged down.

3.3. Grid Generation

At the initial time step and at user-speci�ed intervals, a new hierarchy of grids is

created. This hierarchy of grids should have a high grid eÆciency; grid eÆciency is

de�ned as the percentage of cells in re�ned grids that actually need to be re�ned. On

the other hand, the grids need to be large and blocky to reduce the computational

overhead at grid boundaries.

In this work, we use a two-step regridding algorithm. The �rst step is to tag

the cells that need re�nement; determining which cells to tag is the subject of this

subsection. The second step is to create grids from these tagged cells using the

clustering algorithm developed by Berger and Rigoutsos [9]. In their algorithm,

the tagged cells are broken into rectangular blocks by using signature arrays and

second derivatives of signature arrays to position the edges of grids. This procedure

is repeated until the grids meet the user-speci�ed grid eÆciency.

In this work, we focus on di�erent methods for tagging cells that need re�nement.

We use four di�erent ways of tagging cells for re�nement: 1) tagging user-speci�ed

regions, 2) tagging based on user-speci�ed criteria, 3) tagging using an estimate of

the truncation error, and 4) tagging using a 
ux-based error. Any combination of

these four methods can be used to tag cells.



18 PROPP AND COLELLA

3.3.1. User-Speci�ed Regions

The �rst method of tagging cells is for the user to specify the regions of re�nement.

In this case, we assume that the user knows a priori that certain regions of the

domain will need to be re�ned for certain time periods. Since this is a static

regridding criteria, it is generally not very useful for complicated time-dependent

problems.

3.3.2. User-De�ned Criteria

The secondmethod of tagging cells is for the user to specify criteria for re�nement.

For example, the user may specify a cell is tagged if the pressure in that cell is

greater than a user-speci�ed pressure or if the di�erence in saturation between a

cell and its neighbor is greater than a user-speci�ed tolerance. In this case, the user

must specify which 
ow variables are to be examined and what the tolerances are.

3.3.3. Local Truncation Error

The third method of tagging cells uses an estimate of the local truncation error

(LTE). The LTE is computed, nondimensionalized, and compared to a user-speci�ed

tolerance. If the LTE is greater than the tolerance, then the cell is tagged for

re�nement. The major bene�ts of this method are that it is applicable to a wide

variety of problems and it does not require the user to have any a priori knowledge

of the problem.

We estimate the LTE by comparing the results of advancing the solution on two

di�erent levels. If we de�ne a new level, `C, that consists of level ` grids coarsened

by a factor of two and L(s;vT ) as the operator that advances s in time, then the

estimate of the LTE, e`CLTE , can be written as:

e`CLTE =< L`(s`;v`T ) > �L`C(Av(s`); < v`T >): (18)

We note that computing L(s;vT ) is the same as computing
@s
@t
. On level `C, we use

the velocity averaged down from level `; thus, we avoid needing to solve an elliptic

equation on level `C and the operator L(s;vT ) is simply:

L(s;vT ) = �
1

�
r � F: (19)

To obtain the correct time-centering for L(s;vT ), we advance the solution from

t� 1
2
4t` to t+ 1

2
4t` on level ` and t�4t` to t+4t` on level `C.

Since our estimate of the LTE has units of 1
T
, we nondimensionalize it with a

characteristic time, e�, based on the maximum wave speed and the size of the

media:

e� =
1

D�
max(j

@F

@s
j
1

�
) (20)

where D� is the length of the media. Now, using the user-speci�ed tolerance, tol,

we tag cells where

jeLTEj

e�
> tol:

At interfaces with coarser grids, we expect the scheme to lose accuracy due to

coarse/�ne interpolation; as a result, we expect to see a large error in the cells



AMR FOR POROUS MEDIA FLOWS 19

neighboring the interface. If we use the normal tagging criteria, the interface cells

will always be tagged and the �ne grids will grow until the whole domain is re�ned.

To avoid this problem, we simply copy the error from the neighboring cells that are

not touching the interface. Since areas of high error tend to be in groups of cells

rather than single cells, we expect this copying to work well. Additionally, since

the error at the interface is on a set of one dimension less than the problem, it does

not a�ect the global accuracy of the solution.

3.3.4. Flux-Based Error

The fourth method of tagging cells is an extension of the LTE-based tagging

method that uses a 
ux-based error. In order for the LTE to be O(h2), there needs

to be a cancellation of terms at cell edges. This cancellation occurs in interior

cells, but does not occur at coarse/�ne interfaces and physical boundaries; thus,

we would expect the error to be larger at interfaces. To properly account for this

larger error at the interface, we estimate the error by computing the error in the


ux and then scaling it by a parameter based on the grid size. The implementation

of this method is similar to the LTE-based method in Section 3.3.3 except that this

method measures the error by comparing 
uxes instead of the operator L(s;vT ).

In this method, we compute the time-centered 
uxes on level ` and level `C as

in the LTE-based tagging method. Then, for each edge of the cell, we calculate the


ux di�erence { the di�erence between the average of the �ne-grid 
uxes and the

coarse-grid 
ux. For the top edge of the cell, the 
ux di�erence, 4F T , is de�ned

as:

4F T =< F T;`C > �F T;`:

The left, right, and bottom edges are de�ned analogously.

The error for each cell, e`CFLUX , is de�ned as the maximum 
ux di�erence for any

of that cell's edges multiplied by a surface to volume scaling factor SV :

e`CFLUX = max(4F T ;4FB;4FR;4FL)(SV ): (21)

The SV factor is based on the size and shape of the grids. We de�ne three measures

of grid sizes { L`, LB`, and V OL`:

L` = unduplicated perimeter of grids on level `

LB` = perimeter of grids on level ` that lie on physical boundary

V OL` = volume of grids on level `:

These measures of grid sizes have units; they are not simply dimensionless cell

counts. With these de�nitions, we de�ne the SV ratio at a cell edge on level ` as:

1. SV = LB`

V OL`
, if the edge is at a physical boundary

2. SV = L`

V OL`
, if the edge is not at a physical boundary and level `+1 does not

exist

3. SV = L`+1

V OL`+1
, if the edge is not at a physical boundary and level ` + 1 does

exist.

The 
ux-based error has units of 1
T
, so we use the same nondimensionalization

factor e� as in the LTE-based tagging method (20). We would like to use the same



20 PROPP AND COLELLA

tolerance for the two methods, but the ranges on the errors are di�erent { for a

sample problem, the LTE-based method produced errors that ranged from 0 to 1.4,

while 
ux-based method produced errors that ranged from 0 to 0.25. To estimate

the di�erence in the ranges of the errors, we compare the 
ux-based error and the

LTE-based method on a square grid with constant mesh spacing that covers the

entire domain. For this sample problem with nx cells in the x-direction, the LTE-

based method error will be approximately 4
nx

bigger than the 
ux-based error.

Instead of scaling the error estimate to account for this di�erence, we scale the

tolerance for the 
ux-based error, tol0:

tol0 = tol
4

nx

where tol is the tolerance used in LTE-based tagging method. Now, using the

user-speci�ed tolerance, tol, we tag cells where

jeFLUX j

e�
> tol0:

4. RESULTS

In this section, we describe the results of applying the adaptive algorithm to

four test problems. The �rst test problem explores the e�ects of the freestream

correction by showing the errors that can occur at coarse/�ne interfaces and the

e�ects of the correction algorithm. The second and third problems explore the use

of adaptive algorithm on both smooth and discontinuous problems. The fourth

problem demonstrates the various ways of tagging cells for re�nement; we show

three di�erent methods for tagging cells and the grids that each method produces.

4.1. Problem 1: Freestream Preservation

In this test problem, we explore the e�ects of the freestream correction. We use

the Cartesian coordinate system and a 64 � 64 base grid with a re�nement ratio of

2. The domain is 1.0 by 1.0 and initially contains 
uid with a saturation of 0.60;


uid is injected with a saturation of 0.70. We run two simulations { one using the

freestream correction with � = 0:99 and the other without the correction.

Figure 4(a) shows the maximum and minimum freestream quantity, V , within

the domain as a function of time. Even with the correction, V is not identically

one { this is a result of only using an approximate correction method. However,

the error in V with the correction is 3-4 times smaller than without the correction.

In addition, in the corrected case, V �nally reaches 1.0 at time t = 6:25 { this

corresponds to the saturation front reaching the outlet. On the other hand, in the

uncorrected case, V never reaches 1.0.

Figure 4(b) shows a z-slice of the freestream quantity at time t = 2:93 for both

the corrected and uncorrected cases. In the uncorrected case, the freestream er-

rors accumulate; there are errors at every previous coarse/�ne interface. On the

other hand, in the corrected case, the only error is at the last coarse/�ne interface.

This indicates that the correction algorithm is succeeding in eliminating errors at

interfaces from previous time steps.



AMR FOR POROUS MEDIA FLOWS 21

0.985

0.99

0.995

1

1.005

1.01

1.015

0 1 2 3 4 5 6 7 8 9

V

time

max, no correction
min, no correction

max, with correction
min, with correction

one

(a)

0.985

0.99

0.995

1

1.005

1.01

1.015

0 0.2 0.4 0.6 0.8 1

V

z

no correction
with correction

(b)

FIG. 4. Freestream quantity, V: (a) as a function of time, and (b) a vertical slice at

time t = 2:93. The freestream correction signi�cantly decreases the error in V , but it does not

completely eliminate it.

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0 1 2 3 4 5 6 7 8 9

sa
tu

ra
tio

n

time

max, no correction
min, no correction

max, with correction
min, with correction

(a)

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0 0.2 0.4 0.6 0.8 1

sa
tu

ra
tio

n

z

no correction
with correction

(b)

FIG. 5. Saturation: (a) as a function of time, and (b) a vertical slice at time t = 2:93.

Although the freestream correction does not eliminate the overshoot above 0.7, it does signi�cantly

decrease the amount of the overshoot.

Figure 5(a) shows the maximum and minimum saturation in the domain as a

function of time. For this sample problem, the saturation should always be between

0.6 and 0.7. While both schemes have unphysical jumps above 0.7 and below 0.6,

the corrected scheme has much smaller jumps. Again, this indicates that the scheme

is only approximately correcting for the freestream problems. In addition, we note

that it takes much longer for the uncorrected scheme to reach the correct steady

state value of 0.7.

Figure 5(b) shows a z-slice of the saturation at time t = 2:93 for both the uncor-

rected and corrected cases. The most striking feature in this �gure is the presence

of an unphysical front. In the uncorrected case, the front has a maximum value

of 0.71255 at z = 0:63, while in the corrected case, the front has been smoothed

out over several rows of cells and has a maximum value of only 0.70256; thus,

the correction has not eliminated the error, but it has signi�cantly decreased the

magnitude of the error.



22 PROPP AND COLELLA

(a) (b)

 0.44998

 0.45827

 0.46657

 0.47486

 0.48315

 0.49145

 0.49974

FIG. 6. Advection of a Gaussian distribution: (a) 128 x 128 grid, and (b) 64 � 64 grid

with n
0

ref
= 2.

TABLE 1

Summary of results for the advection of a Gaussian distribution.

Base minimum maximum CPU cell

Grid n
0

ref n
1

ref saturation saturation time count

64 - - 0.44998 0.49921 464 81920

32 2 - 0.44998 0.49922 510 42176

128 - - 0.44998 0.49974 3642 655360

64 2 - 0.44998 0.49974 2307 189056

4.2. Problem 2: Gaussian Distribution

In this test problem, we advect a Gaussian distribution of saturation in the

Cartesian coordinate system. Figure 6(a) shows the saturation on a single 128 �

128 grid, while Figure 6(b) shows the saturation on an equivalent AMR grid - a

64 � 64 base grid with a re�nement ratio of 2. These two �gures are qualitatively

similar.

Table 1 summarizes the results of these two simulations plus simulations on a

single 64 � 64 grid and a 32 � 32 base grid with a re�nement ratio of 2. The

table shows that the maximum and minimum saturations on the equivalent grids

are approximately equal. In addition, the table shows cell counts and CPU time

for each of the simulations. These cell counts represent the number of grids cells

that were advanced in time to obtain the solution; cell counts include cells which

are covered by cells from �ner grids. The table shows that AMR reduced the cell

count by 49% for the e�ective 64 � 64 grid and by 71% for the e�ective 128 � 128

grid. The CPU time increased by 10% on the e�ective 64 � 64 grid, but decreased

by 37% on the e�ective 128 � 128 grid; this indicates that there were not enough

cells on the smaller e�ective grid to compensate for the overhead of AMR. Since cell

counts are proportional to memory usage and CPU times measure computational

e�ort, we can see the bene�ts of using adaptive re�nement.



AMR FOR POROUS MEDIA FLOWS 23

(a) (b)

-0.00124

-0.00080

-0.00036

 0.00009

 0.00053

 0.00097

 0.00141

FIG. 7. Local truncation error on equivalent grids: (a) 128 � 128 grid, and (b) 64 � 64

grid with n
0

ref
= 2.

We can further illustrate that the adaptive algorithm is solving the problem

correctly by examining two types of error in the solution { 1) the local truncation

error and 2) the cumulative error in the solution. Local truncation error is an

estimate of the error that has occurred over the last time step; it is computed by

comparing the results of advancing the problem one time step on a coarse grid and

one time step on a �ne grid. Figure 7 shows the local truncation error on the 128 �

128 grid and the equivalent adaptive grid hierarchy. There is no noticeable increase

in the local truncation error in the re�ned region of the adaptive grids. However,

we do notice that there is an error at the coarse/�ne interface due to the coarse/�ne

interpolation. Since the coarse/�ne error is signi�cantly smaller than the error in

the re�ned region, it does not a�ect the quality of the solution.

We can estimate the cumulative error in the solution by comparing it with the

solution on a 256 � 256 grid. This computation measures the total error in the

solution; this is contrasted with the local truncation error which only measures the

error in the solution over the last time step. Figure 8 shows the cumulative error

in the solution on the 128 � 128 grid and the equivalent adaptive grid hierarchy.

Again, we notice that the error in the re�ned region of the adaptive grid is the

same as in the single-grid case and there are small regions of error at the coarse/�ne

interfaces. The cumulative error and the local truncation error are scaled di�erently,

so it is not useful to compare their magnitudes, but they do produce qualitatively

similar results.

4.3. Problem 3: Discontinuous Solution

In this test problem, we demonstrate the ability of the algorithm to solve problems

with saturation fronts. The domain is 1.0 by 1.0 and initially contains 
uid with a

saturation of 0.45; at time t = 0:0, 
uid is injected with a saturation of 0.70. The

porosity varies across the width of the domain:

�(x) = 0:35 + 0:14(x� 0:5)
e16:6jx�0:5j

e8:333
:



24 PROPP AND COLELLA

(a) (b)

-0.00011

-0.00007

-0.00003

 0.00001

 0.00005

 0.00009

 0.00013

FIG. 8. Cumulative error on equivalent grids: (a) 128 � 128 grid, and (b) 64 � 64 grid

with n
0

ref
= 2.

TABLE 2

Summary of results for the discontinuous problem.

Base minimum maximum CPU cell

Grid n
0

ref n
1

ref saturation saturation time count

32 - - 0.44992 0.70011 209 31744

64 - - 0.44988 0.70027 1484 237568

32 2 - 0.44996 0.70066 1269 100096

128 - - 0.44986 0.70058 11497 1851392

64 2 - 0.44990 0.70076 6471 524864

32 4 - 0.44995 0.70058 5510 496384

32 2 2 0.44981 0.70081 4926 426624

We run this problem to time t = 1:35 on two series of equivalent grids. For the

�rst series of problems, we use two grids with a �ne resolution of 64 � 64: 1) a

64 � 64 grid and 2) a 32 � 32 base grid with a re�nement ratio of 2. For the

second series of problems, we use four grids with a �ne resolution of 128 � 128: 1)

a 128 � 128 grid, 2) a 64 � 64 base grid with a re�nement ratio of 2, 3) a 32 � 32

base grid with a re�nement ratio of 4, and 4) a 32 � 32 base grid with two levels

of re�nement and a re�nement ratio of 2. The results of these four problems are

shown in Figure 9. In both series of simulations, there is very little di�erence in

the solution between equivalent grids.

Table 2 summarizes some of the results of these simulations. It shows that while

the maximum and minimum saturations do vary slightly between equivalent grids,

the error is still small in comparison with the error due to the numerical method.

The cell count and CPU time columns indicate the bene�ts of re�nement { in

particular, we note that for the equivalent 128 � 128 grid, AMR reduced the cell

counts by 72-77% and the CPU times by 44-57%.



AMR FOR POROUS MEDIA FLOWS 25

(a) (b)

(c) (d)

 0.44980

 0.49164

 0.53348

 0.57532

 0.61717

 0.65901

 0.70085

FIG. 9. Saturation front on equivalent grids: (a) 128 � 128 grid, (b) 64 � 64 grid with

n
0

ref
= 2, (c) 32 � 32 grid with n

0

ref
= 4, and (d) 32 � 32 grid with n

0

ref
= 2 and n

1

ref
= 2.

4.4. Problem 4: Error Tagging

This test problem illustrates the use of three di�erent methods of tagging cells

for re�nement { 1) tagging based on a user-speci�ed criteria, 2) LTE-based tagging

tagging, and 3) 
ux-based tagging. All three methods are applied to the same

model problem { the discontinuous front moving through the porous medium (this

is the same model problem that was discussed in Section 4.3). In all three cases,

the solution and the grids are identical immediately before regridding, as shown in

Figure 10(a). In addition, all three methods use a grid eÆciency of 0.80.

The �rst method used to tag cells is the user-speci�ed criteria method. We tag

cells when the saturation changes by more than 0.1 between neighboring cells. This

is a computationally inexpensive way to tag cells; however, it does require a priori

knowledge of the 
ow �eld { we must know that saturation is the quantity we want

to examine and that 0.1 is a large enough jump to require re�nement. Figure 10(b)

shows the error as determined by the saturation gradient and the grids it produces.



26 PROPP AND COLELLA

 0.44992

 0.49181

 0.53370

 0.57559

 0.61747

 0.65936

 0.70125

(a)

 0.10000

 0.12470

 0.14939

 0.17408

 0.19878

 0.22348

 0.24817

(b)

 0.01000

 0.23264

 0.45528

 0.67792

 0.90057

 1.12321

 1.34585

(c)

 0.00125

 0.04019

 0.07914

 0.11808

 0.15702

 0.19597

 0.23491

(d)

FIG. 10. The regridding process: (a) saturation before regridding, (b) error based on tagging

the di�erence in saturation between neighboring cells and the resulting grids, (c) error based on

operator and the resulting grids, and (d) error based on 
ux di�erencing and the resulting grids.

Since this method actually tags cells on level ` and the other methods tag cells on

level `C, this method should tag fewer unnecessary cells.

The second method used to tag cells is the LTE-based tagging method. Figure

10(c) shows the estimate of the error using a tolerance of 0:01 and the grids it

produces. The third method used to tag cells is the 
ux-based tagging method.

Since we used a tolerance of 0:01 in the estimate of error example, we use a tolerance

of 0:01
8

= 0:00125 in this example. Figure 10(d) shows the 
ux di�erencing error

and the grids it produces. The scale of the plot shows that dividing by a factor of

8 does make the range of the 
ux-based error comparable to the range of the error

in the estimate of LTE example.

All three methods of tagging cells were able to detect the discontinuity. As

expected, each method tagged slightly di�erent sets of cells and thus, produced

slightly di�erent grids. These slight di�erences do not a�ect the quality of the

solution.

5. CONCLUSIONS

This paper described the extension of the single-grid code developed in [16] to

an adaptive hierarchy of grids. The adaptive algorithm used subcycling to allow



AMR FOR POROUS MEDIA FLOWS 27

for re�nement in time, combined with a volume-discrepancy method to correct for

freestream preservation problems at coarse/�ne interfaces. Godunov's method and

the elliptic solvers were modi�ed to work on the AMR hierarchy. The elliptic solvers

used a lagged correction scheme for coarse/�ne boundary conditions to reduce the

number of composite solves. In addition, we used several di�erent methods to

determine where patches of re�nement were needed.

Results showed that the freestream correction is necessary at coarse/�ne in-

terfaces. Our freestream correction did not completely eliminate the freestream

preservation problem, but it did signi�cantly decrease the magnitude of the error.

Simulations demonstrated that the adaptive code was able to reproduce single-grid

results for both smooth and discontinuous problems; in addition, these results were

obtained with less computational e�ort. Finally, several methods of tagging cells

for regridding were demonstrated. Each method produced a slightly di�erent set of

grids, but these slight di�erences in grids did not a�ect the quality of the solution.

This adaptive code is meant as an initial step toward the design of a more com-

plicated simulator of 
ow in porous media. One way to extend this work is to

add more physical e�ects; these e�ects include multiple phases and components,

heat and mass transfer, chemical reactions, and capillary pressure. Another way

to extend this work is to add a more realistic geometry. This extension could

include using a Cartesian grid to model heterogeneities in the 
ow or using a three-

dimensional coordinate system.

APPENDIX: ELLIPTIC SOLVERS

In this appendix, we describe the use of two types solvers { level solvers and

composite solvers. For each of these types, we describe two methods of solution {

a multigrid based method and a biconjugate gradient stabilized method. We focus

on the solution of L(�) = �, where the L operator is the elliptic operator de�ned

in Section 3.1.1.

We de�ne r` and e` as the residual and correction on level `. In addition, we

de�ne Smooth`(e`; r`) as the operator that smoothes the solution on a level. In

the standard multigrid algorithm, the smoothing operator is typically Gauss-Seidel

with Red-Black ordering (GSRB). For our level and composite solvers, we use the

L`(e`; e`�1 = 0) operator (the level operator with all the coarse grid information

set to zero). As a result, the only information that Smooth` requires about the

other levels in the hierarchy is n`ref .

A.1. LEVEL SOLVERS

A level solver on level ` solves the elliptic problem without knowledge of data

from any other level; level ` is treated as both the �nest and coarsest level of data.

As a result, the only di�erence between a level solver and the standard multigrid

solver are the grids. In a standard solver, each level consists of a single grid that

covers the entire problem domain. In a level solver, each level may consist of several

grids which generally do not cover the entire problem domain.

In this work, we use two types of level solvers { a multigrid-based algorithm

and a biconjugate gradient stabilized method with a multigrid preconditioner. The

multigrid level solver uses V-cycles with a conjugate gradient bottom solver. Since



28 PROPP AND COLELLA

a level solver does not include data from other levels, it uses the L` operator. The

biconjugate gradient stabilized (BiCGStab) level solver is the standard BiCGStab

solver with a dot product de�ned on a union of grids (see Barrett et al. [3] for a

more detailed discussion of BiCGStab). The biconjugate gradient stabilized method

requires about 3-5 times more memory than the multigrid-based method, but is

generally faster when there are many small grids.

A.2. COMPOSITE SOLVERS

A composite solver on level `base solves on all grids �ner than level `base. In other

words, it starts at level `max and solves on each level until it reaches level `base and

then uses a bottom solver. The solution is then interpolated back to level `base.

The composite solver has another signi�cant feature { if possible, it computes

multigrid coeÆcients using data from other levels in the grid hierarchy rather than

simply averaging down the coeÆcients. For example, consider a grid hierarchy with

a constant re�nement ratio of two. If we coarsen the �nest grid in the hierarchy

within a multigrid solver, then the new multigrid level corresponds to level `max�1

in the AMR hierarchy; as a result, we can use the saturations and other data on level

`max�1 to compute the multigrid coeÆcients on level `max�1, instead of averaging

down the coeÆcients from level `max

A.2.1. Multigrid

The composite multigrid elliptic solver is based on the elliptic solver described

by Martin and Cartwright [15]. The algorithm is written in residual-correction

form and is summarized in Figure 1. The �rst step of the composite algorithm is

to compute the residual on the �nest level, r`max . Then, we save a copy of the

solution, �`;save, for later use. Next, we apply the smoother, Smooth(e`; r`), to get

an estimate of the correction on the current level, e`, and then update the solution

with the correction. Then, we compute the residual on level `�1 based on whether

the cell on level `� 1 is covered by a grid on level `:

r`�1 =

�
< r` � L`(e`; e`�1) > on P(
`)

�`�1 � L`(�`�1) on 
`�1 �P(
`).

This process of computing the correction and averaging down the residual is re-

peated until we reach level `base. We solve for e`base by continuing the multigrid

V-cycle; when we can no longer coarsen the grids, we use a conjugate gradient

bottom solver. The level `base solution is then updated with the correction.

Then, we progress up the V-cycle. First, we use the I``�1 operator to interpolate

the level `+1 correction to level `. However, the problem is no longer homogeneous,

so we must modify the residual:

r` = r` � L`(e`; e`�1):

We then smooth to solve for the correction to the correction, Æe` and update the

correction and the copy of the solution we saved. This process is repeated on

progressively �ner levels until we reach the �nest level.

A.2.2. BiConjugate Gradient Stabilized



AMR FOR POROUS MEDIA FLOWS 29

MG()

r`max = �`max � Lcomp;`max(�`max)

do while (iter < maxIter and kr`maxk < tol)

iter++

AmrMG(`max)

r`max = �`max � Lcomp;`max(�`max)

end do

end MG

AmrMG (`)

if (`= `max)

r` = �` � L`(�`; �`�1)

end if

for `= `max::`base + 1,-1

�`;save = �`

e`�1 = 0

Smooth(e`; r`)

�` = �` + e`

r`�1 =

�
< r` � L`(e`; e`�1) > on P(
`)

�`�1 � L`(�`�1) on 
`�1 �P(
`)

end for

Solve(e`base ; r`base )

�`base = �`base + e`base

for `= `base + 1::`max

e` = e` + I``�1(e
`�1)

r` = r` � L`(e`; e`�1)

Æe` = 0

Smooth(Æe`; r`)

e` = e` + Æe`

�` = �`;save + e`

end for

end AmrMG

FIG. 1. Pseudocode for a composite solver using a multigrid-accelerated iterative method.

The composite BiCGStab elliptic solver is based on the elliptic solver of Bet-

tencourt [10]. The algorithm for a composite BiCGStab solver is the same as the

BiCGStab algorithm for a level solver except for three modi�cations due to the

presence of a hierarchy of grids. First, the vector quantities are de�ned on each

level from `base to `max; as a result, there is a loop over levels when each of these

quantities is calculated. Second, the Dot operator becomes a composite operator,

Dotcomp; we set all the data that is covered by a �ner grid to zero, and then sum

the dot products for each of the levels. Third, since this is a composite solve, we

use the Lcomp;` operator instead of the L` operator.



30 PROPP AND COLELLA

ACKNOWLEDGMENT

We would like to thank Dan Martin and Matt Bettencourt for their help in developing and

testing the AMR framework and elliptic solvers used in this work.

REFERENCES

1. G. Acs, S. Doleschall, and E. Farkas. General purpose compositional model. Society of

Petroleum Engineers Journal, pages 543{552, August 1985.

2. A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A conservative

adaptive projection method for the variable density incompressible Navier-Stokes equations.

Journal of Computational Physics, 142:1{46, 1998.

3. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods. SIAM, 1994.

4. J. Bear. Dynamics of Fluids in Porous Media. Dover Publications, 1972.

5. J. B. Bell, P. Colella, and J. A. Trangenstein. Higher order Godunov methods for general

systems of conservation laws. Journal of Computational Physics, 82(2):362{397, 1989.

6. J. B. Bell, G. R. Shubin, and J. A. Trangenstein. A method for reducing numerical dispersion

in two-phase black-oil reservoir simulation. Journal of Computational Physics, 65:71{106,

1986.

7. M. J. Berger and P. Colella. Local adaptive mesh re�nement for shock hydrodynamics. Journal

of Computational Physics, 82(1):64{84, 1989.

8. M. J. Berger and J. Oliger. Adaptive mesh re�nement for hyperbolic partial di�erential equa-

tions. Journal of Computational Physics, 53:484{512, 1984.

9. M. J. Berger and I. Rigoutsos. An algorithm for point clustering and grid generation. IEEE

Transactions Systems, Man and Cybernetics, 21(5):1278{1286, 1991.

10. M. T. Bettencourt. A Block Structured Adaptive Steady-State Solver for the Drift Di�usion

Equations. PhD thesis, UC Berkeley, 1998.

11. P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. Journal of

Computational Physics, 87:171{200, 1990.

12. R. E. Collins. Flow of Fluids through Porous Materials. Reinhold Publishing Corporation,

1961.

13. A. Gianetto and V. Specchia. Trickle-bed reactors: State of art and perspectives. Chemical

Engineering Science, 47(13/14):3197{3213, 1992.

14. R. D. Hornung and J. A. Trangenstein. Adaptive mesh re�nement and multilevel iteration for


ow in porous media. Journal of Computational Physics, 136:522{545, 1997.

15. D. F. Martin and K. L. Cartwright. Solving Poisson's equation using adaptive mesh re�nement.

Technical Report UCB/ERL M96/66, UC Berkeley, 1996.

16. R. Propp, P. Colella, W. Y. Crutch�eld, and M. Day. A numerical model for trickle bed

reactors. submitted to JCP, 1999.

17. J. A. Trangenstein and J. B. Bell. Mathematical structure of the black-oil model for petroleum

reservoir simulation. SIAM Journal of Applied Math, 49(3):749{783, 1989.

18. J. W. Watts. A compositional formulation of the pressure and saturation equations. In 7th

SPE Symposium on Reservoir Simulation, pages 113{122. SPE, November 1983.


